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Abstract 

The problem of modulational stability of quasi-monochromatic 

wave-trains propagating in a rotating fluid which provides both 

the small-scale Boussinesq dispersion and large-scale Coriolis 

dispersion is studied. We derive two-dimensional non-linear 

Schrödinger (NLS) equation from the basic set of Boussinesq 

equations for shallow water waves taking into account the 

Coriolis force caused by Earth’ rotation. For unidirectional waves 

propagating in one direction only the considered set of equations 

reduces to the Gardner–Ostrovsky equation which is applicable 

only within a finite range of wavenumbers. It is shown that the 

narrow-band wave-trains are modulationally stable for relatively 

small wavenumbers k < kc and unstable for k > kc, where kc is 

some critical wavenumber. The derived NLS equation is 

applicable even for waves with very small wavenumbers up to 

zero. The detailed analysis of coefficients of the NLS equation is 

presented both for one-dimensional and two-dimensional cases. 

The conditions of self-modulation and self-focussing are 

determined and presented graphically on the plane of parameters. 

Application of results obtained to the real oceanic conditions is 

discussed. 

Introduction  

As well-known, small-amplitude quasi-monochromatic surface 

and internal gravity waves on a shallow water are stable with 

respect to self-modulation and self-focussing [1]. This result 

formally agrees with what follows from the Korteweg–de Vries 

(KdV) equation: 
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where the nonlinear coefficient  for internal waves can be of 

either sign, and  > 0 both for surface and internal gravity waves. 

In particular, for surface gravity waves the coefficients are [1, 2] 

 = 3c0/2h,  = c0h2/6, where c0 = (gh)1/2 is the speed of long 

linear waves, g is the acceleration due to gravity, h is the fluid 

depth. 

The dispersion relation between the wave frequency  and 

wavenumber k for infinitesimal-amplitude waves in the linearised 

Eq. (1) is well-known (see, e.g., [1, 6]):  (k) = c0k –  k3. It 

shows that the dispersion appears at relatively large k (small 

wavelength  = 2 /k), when the influence of the second term in 

the right-hand side is not negligibly small. Such small-scale 

(“Boussinesq-type”) dispersion is typical for long water waves. 

The derivation of Eq. (1) is based on the assumption that the 

dispersion is weak, so that  k3 << c0k or k << kB, where kB = 

(c0/ )1/2.  

When the Earth’ rotation is taken into account the large-scale 

(“Coriolis-type”) dispersion appears, which manifests when k  

0 and asymptotically disappears when k   [5, 10, 11]. In the 

intermediate range of wavelength (wave number) the large-scale 

dispersion is small and of the same order of smallness as the 

small-scale dispersion, so that the combined dispersion relation 

can be presented in the form  (k) = c0k –  k3 +  /k, where 
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(2) 

 > 0 is a constant. The corresponding weakly nonlinear 

evolution equation generalising the KdV equation (1) is known as 

the Ostrovsky equation [5, 10, 11]:  
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On the basis of this equation it was shown [3, 4, 14, 15] that the 

large scale dispersion drastically changes the modulation stability 

of quasi-harmonic wave-trains. The nonlinear correction to the 

wave frequency remains negative for all wavenumbers as in the 

case of KdV equation, but the dispersion coefficient in the non-

linear Schrödinger equation changes its sign at k = kc  ( /3 )1/4 

when the group velocity Vg = d /dk attains maximum. 

Therefore, the corresponding NLS equation according to the 

Lighthill criterion [1, 6, 8, 12, 17] remains modulationally stable 

for k < kc, but becomes unstable for k > kc. This is in a sharp 

contrast with the intuition based on the NLS equation derived 

from the KdV equation (1). 

As the Ostrovsky equation is an approximate one and has a 

limited range of validity, the issue of modulation stability of 

wave-trains remained uncertain thus far, because at very small 

wavenumbers where this model equation is inapplicable the 

situation with the modulation stability could be different. In 

addition to that the Ostrovsky equation is one-dimensional and 

cannot describe two-dimensional wave process depending on two 

special variables. Therefore the problem of modulation stability 

of wave-trains should be reconsidered within the framework of 

more accurate equations in the long-wave limit. Moreover, for 

the analysis of modulation stability of water waves both the KdV 

and Ostrovsky model equations are, obviously, insufficient, 

because they contain only the quadratic nonlinear terms, whereas 

the cubic nonlinear terms in the primitive equations usually 

provide the same order contribution to the nonlinear coefficient 

of NLS equation. 

Below the problem of modulation stability of quasi-

monochromatic wave-trains is studied on the basis of two-

dimensional shallow-water model set of equations derived by 

Shrira [5, 13]. We derive the 2D NLS equation from this set of 

equation and study a stability of quasi-monochromatic wave-

trains with respect to longitudinal and transverse modulations. 

Then we compare the results obtained with what follows from the 

NLS equation derived from the model Ostrovsky equation and its 

generalisation [3, 4, 14, 15]. We present a diagram on the plane 

of parameters (components of a wave vector) which illustrate 

illustrates zones were self-modulation and self-focussing 

instability can occur. 



The governing equations and dispersion relations 

We start with the following set of equations applicable (after 

appropriate scaling) both to surface and internal waves in the 

Boussinesq approximation [5, 13]: 
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where  is the perturbation of a free surface in a non-stratified 

fluid or perturbation of an isopycnal surface (surface of equal 

density) in a stratified fluid, q = (u, ) is the depth averaged fluid 

velocity with two horizontal components, longitudinal u and 

transverse , f = f n, where f = 2 sinis the Coriolis parameter, 

 is the angular frequency of Earth rotation,  is the local 

geographic latitude, n is the unit vector normal to the Earth 

surface, and  = (/x, /y). 

By introducing new variables  = f t,  = x3/h,  = y3/h, one 

can present Eqs. (4) and (5) in the dimensionless scalar form: 
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where C 2 = 3(c0/h f )2 stands for the normalised characteristic 

wave speed, and 3 , 3 , .u u hf v v hf h     For the 

estimates we put C = 103 assuming that h = 3000 m, g = 10 m/s 

(c0 = 173 m/s),  f = 10–4 s–1.  

For small-amplitude perturbations ~exp[i ( t – kx – ky)] in the 

linear approximation the following dispersion relation can be 

derived from Eqs. (6)–(8): 
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where k2 = kx
2 + ky

2.  

Assuming that in general, for waves of small, but finite amplitude 

A, the wave frequency depends on the wave-number components 

kx and ky and also on A2, we can present the dispersion relation 

(9) in terms of the Taylor series around a point (kx0, ky0, 0):  
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where Vgx = /kx, Vgy = /ky are the components of group 

velocity Vg = (Vgx, Vgy) calculated in the point (kx0, ky0, 0); all 

other partial derivatives are also calculated in the same point, and 

M  |A|2. 

Using the well-known approach [2], one can restore the partial 

differential equation which corresponds to the approximate 

dispersion relation (10): 
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where  
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Making the orthogonal transformation of coordinates with the 

new X-axis along the vector of group velocity and Y-axis in the 

perpendicular direction, one can present this equation in the 

standard form of the two-dimensional non-linear Schrödinger 

equation: 
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where X =  – Vgx,  Y =  – Vgy, and the coefficients px and py 

can be readily found from the dispersion relation (9):  
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where k  kx in this coordinate frame and ky = 0. 

The dependences of normalised dispersion coefficients 2px/(C2 – 

1) and 2py/(C2 – 1) on k are shown in figure 1 for C = 103.  
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Figure 1. The dependences of normalised dispersion coefficients in the 

NLS equation (12) as per Eqs. (13). Lines 1 and 2 pertain to px and py 
when the NLS equation is derived from Eqs. (6)–(8); line 3 pertains to the 

normalised dispersion coefficients pO when the NLS equation is derived 

from the one-dimensional Ostrovsky Eq. (3). 

 

As one can see, the dispersion coefficient py is positive and 

monotonically decreases with k, whereas the coefficient px 

decreases non-monotonically and changes its sign at the wave 

number  
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The dispersion coefficient pO changes its sign at 
241 3Ok k C  . For very large value of the parameter C (C >> 

1), k1  kO. 

The nonlinear coefficient q in Eq. (12) has been derived in [9]: 
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Graphic of this dependence is shown in figure 2 by line 1 for C = 

103. The nonlinear coefficient (14) is non-monotonic and changes 

its sign at 2

2 5 2 0.5k C C   .  

If the NLS equation is derived from the one-dimensional 

Ostrovsky Eq. (3), then the nonlinear coefficient reads:  



                                      
 

3 3

2 4

3
.

1 4
O

C k
q k

C k




                           

(14b) 

The dependence qO(k) is non-monotonic too, but qO(k) does not 

change its sigs and remains negative for all k (line 2 in figure 2). 
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Figure 2. The dependences of normalised nonlinear coefficients in the 

NLS equation (12). Line 1 pertains to the case when the NLS equation is 
derived from Eqs. (6)–(8) as per Eq. (14a); line 2 pertains to the case 

when the NLS equation is derived from the Ostrovsky Eq. (3) as per Eq. 

(14b).  
 

The signs of the dispersive and nonlinear coefficients are very 

important because they determine the stability or instability of 

wave trains with respect to self-modulation or self-focussing. 

The analysis of modulational instability 

As well known, the stability of quasi-monochromatic wave trains 

with respect to small modulations is determined within the 

framework of NLS equation (12) by the relative sign of nonlinear 

and dispersive coefficients. According to the Lighthill criterion 

[1, 6, 8, 12, 17], the stability with respect to self-modulation 

occurs when px(k)q(k) < 0, otherwise, when px(k)q(k) > 0, the 

wave-trains are unstable. In the latter case the “bright” envelope 

solitons can exist as well as the breathers – nonstationary solitary 

waves which oscillate (“breathe”) in the process of propagation 

[11]. In the former case only “dark” solitons can exist on the 

background of a sinusoidal wave (see the references cited above). 

In one-dimensional case the analysis of wave-train stability with 

respect to self-modulation was performed in [9]; the result is 

shown in figure 3.  
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Figure 3. Ranges of stability and instability of wave trains against self-

modulation [9].  

 

As one can see from this figure, the stability of wave trains with 

respect to self-modulation occurs at small and large wave 

numbers, i.e. when 0 < k < k1, and when k > k2, (notice that the 

NLS model based on Eqs. (3), (4) is applicable only for relatively 

small dimensionless wave numbers k << 1). The instability 

occurs in the range k1 < k < k2. As well-known, in a non-rotating 

fluid of a finite depth wave trains are stable against self-

modulation for k < kc  1.363 [1], and for k > kc the self-

modulation again occurs (see figure 3). 

The model based on the one-dimensional Ostrovsky Eq. (3) 

predicts the existence of only one boundary between the stability 

and instability with respect to self-modulation at k = kO  k1. 

In the case when the NLS equation is derived from the one-

dimensional KdV equation (1) the product p(k)q(k) = –27C2/2 is 

always negative, therefore wave-trains are stable against self-

modulations for all k within the range of validity of the KdV 

equation k << 1. 

The wave-train stability with respect to the self-focussing is 

determined similarly by the product py(k)q(k). From Eqs. (13b) 

and (14a) it follows that the self-focussing can occur only when k 

> k2, when the nonlinear coefficient becomes positive together 

with py(k) (see Figs. 1 and 2). 

In the general case the analysis based on the Lighthill criterion 

shows that the modulation instability of long waves in a rotating 

fluid occurs for oblique perturbations propagating under the 

angle  with respect to X-axis within a certain sector. The 

boundaries of the instability region are determined by equation: 
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Figure 4 illustrates the zones where the modulation instability can 

occur (zones 3 and 4) and where it cannot occur (zones 1 and 2). 

This figure generalises the diagram shown in figure 3 for one-

dimensional case and reduces to figure 3 when  = 0. 
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Figure 4. Parameter plane which shows that the modulation instability 

can occur within the zones 3 and 4, whereas it cannot occur within the 
zones 1 and 2. 

 

Thus on basis of this analysis we discovered the conditions when 

the self-modulation and self-focussing phenomena can occur in a 

rotating shallow water. There is no situations when these two 

phenomena co-exist, therefore a wave collapse [16] cannot occur 

in a shallow rotating fluid. 

Conclusions 

In this paper we have presented a derivation of two-dimensional 

NLS equation from the basic set of equations describing long 

waves in a rotating shallow water [5, 13]. In one-dimensional 

case when all variables depend of only one special coordinate the 

derived NLS equation agrees well with the NLS equation derived 

from the Ostrovsky equation (3) [3, 4], as well as from its 

generalised version, the Gardner–Ostrovsky equation with the 

cubic nonlinearity [14, 15], within the range of validity of both 

these model equations. Beyond the range of validity of these 

equations at relatively small wavelengths (k > k2) and relatively 

large wavelengths (0 < k < k1) the NLS equation derived from the 

basic set of shallow-water equations predicts the stability of wave 

trains with respect to self-modulation, whereas such conclusion 

cannot be obtained from the model Ostrovsky equation or 

Gardner–Ostrovsky equation.  

The developed theory predicts wave train stability with respect to 

self-focussing for relatively large wavelength with k < k2. 

Notice in the conclusion that similar analysis can be performed 

not only with respect to water waves, but also to plasma waves, 

waves in solids, optical fibres, and so on (see [9]). 
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